Band 1. Einfuehrung in die numerische Mathematik by Karl Finck von Finckenstein

By Karl Finck von Finckenstein

Show description

Read Online or Download Band 1. Einfuehrung in die numerische Mathematik PDF

Best mathematics books

Mathematical Problems and Proofs: Combinatorics, Number Theory, and Geometry

A steady advent to the hugely refined international of discrete arithmetic, Mathematical difficulties and Proofs provides subject matters starting from ordinary definitions and theorems to complicated issues -- comparable to cardinal numbers, producing services, homes of Fibonacci numbers, and Euclidean set of rules.

Graphs, matrices, and designs: Festschrift in honor of Norman J. Pullman

Examines walls and covers of graphs and digraphs, latin squares, pairwise balanced designs with prescribed block sizes, ranks and permanents, extremal graph conception, Hadamard matrices and graph factorizations. This booklet is designed to be of curiosity to utilized mathematicians, laptop scientists and communications researchers.

Elementare Analysis: Von der Anschauung zur Theorie (Mathematik Primar- und Sekundarstufe) (German Edition)

In diesem Lehrbuch finden Sie einen Zugang zur Differenzial- und Integralrechnung, der ausgehend von inhaltlich-anschaulichen Überlegungen die zugehörige Theorie entwickelt. Dabei entsteht die Theorie als Präzisierung und als Überwindung der Grenzen des Anschaulichen. Das Buch richtet sich an Studierende des Lehramts Mathematik für die Sekundarstufe I, die „Elementare research" als „höheren Standpunkt" für die Funktionenlehre benötigen, Studierende für das gymnasiale Lehramt oder in Bachelor-Studiengängen, die einen sinnstiftenden Zugang zur research suchen, und an Mathematiklehrkräfte der Sekundarstufe II, die ihren Analysis-Lehrgang stärker inhaltlich als kalkülorientiert gestalten möchten.

Extra resources for Band 1. Einfuehrung in die numerische Mathematik

Sample text

That means that the paper is constrained by the properties of Euclidean geometry. 5-dimensional and 3-dimensional forms using algorithms such as circle-river packing [Lang 03] and Origamizer [Tachi 09] that rely on Euclidean metrics. But what if the paper were not Euclidean? 1007/s00283-012-9274-3 AND ROBERT J. LANG In this work, we explore non-Euclidean origami, specifically, origami carried out with paper that possesses a uniform negative Gaussian curvature, with particular emphasis on the most iconic origami figure, the traditional tsuru, or origami crane.

The amount of bunching is critical, though; it needs to be just the right amount at every point of the paper. Too much, and the curvature is too large at that point; too little, and the curvature is too small. And if the curvature is nonuniform, then one loses the ability to do metrically flat folding. We need to introduce just the right amount of curvature at every point so that the result is congruent to the hyperbolic desk that we are folding against. So, let’s use the ‘‘desk’’ as a mold; we will take a Euclidean sheet of paper and mold it against a hyperbolic form; the result will be a pseudospherical sheet of paper from which we can do true hyperbolic origami.

The mold and resulting sheet are shown together in Figure 3. We now have hyperbolic paper.

Download PDF sample

Rated 4.24 of 5 – based on 38 votes